Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells.

نویسندگان

  • Leslie C Hodges
  • Jennifer D Cook
  • Edward K Lobenhofer
  • Leping Li
  • Lee Bennett
  • Pierre R Bushel
  • C Marcelo Aldaz
  • Cynthia A Afshari
  • Cheryl Lyn Walker
چکیده

Tamoxifen is a widely used breast cancer therapeutic and preventative agent. Although functioning as an estrogen antagonist at the cellular level, transcriptional profiling revealed that at the molecular level, tamoxifen functions largely as an agonist, virtually recapitulating the gene expression profile induced in breast cancer cells by estrogen. Remarkably, tamoxifen induces transcription factors and genes involved in promoting cell cycle progression including fos, myc, myb, cdc25a, cyclins E and A2, and stk15 with kinetics that paralleled that of cells cycling in response to estrogen, even though tamoxifen-treated cells are not transiting through the cell cycle. Induction of cell cycle-associated genes was specific for tamoxifen, and did not occur with raloxifene. However, cyclin D1 was a key estrogen-induced gene not expressed in response to tamoxifen or raloxifene but constitutively expressed in tamoxifen-resistant cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells

The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...

متن کامل

Crude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells

The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...

متن کامل

بررسی بیوانفورماتیکی میانکنش بین میکرو RNAها با ژن‌های دخیل در عود مجدد سرطان پستان درمان شده با تاموکسیفن

Background and Objective: Tamoxifen is the most commonly used treatment for the patients with breast cancer called ER +, which prevents the expression of genes that are effective in the growth and proliferation of cancer cells by estrogen. Resistant to Tamoxifen is a major clinical problem in breast cancer treatment. In recent studies, the role of microRNAs in tamoxifen resistance has been rais...

متن کامل

The Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines

It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...

متن کامل

The Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines

It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 1 4  شماره 

صفحات  -

تاریخ انتشار 2003